Unit 4: Further Mechanics, Fields and Particles - Mark scheme

Question number	Answer	Mark
1	D	C
2	A	1
3	B	1
4	C	1
5	B	1
6	B	1
7	D	1
10	D	1

Question number	Answer	Mark
$\mathbf{1 1}$	$\bullet \quad$ Use of $E=Q / 4 \pi \varepsilon_{0} r^{2}$	(1)
	$\bullet \quad E=1.1 \times 10^{5} \mathrm{~N} \mathrm{C}^{-1}$	(1)
	$\bullet \quad$ Direction is towards the point charge	
	Example of calculation $E=Q / 4 \pi \varepsilon_{0} r^{2}$ $E=3.7 \times 10^{-9} \mathrm{C} /\left(4 \pi \times 8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}(0.055 \mathrm{~m})^{2}\right)$ $E=1.1 \times 10^{5} \mathrm{~N} \mathrm{C}^{-1}$	
	Total for Question $\mathbf{1 1}$	$\mathbf{3}$

Question number	Answer	Mark		
$\mathbf{1 2}$	$\bullet \quad$ Identifies meson structure quark - antiquark	(1)		
	$\bullet \quad 1$ correct combination 1 mark			
$\bullet \quad 2$ or 3 correct combinations 2 marks				
Combinations are				
$(+2 / 3 e)+(-2 / 3 e)=0$				
$(+2 / 3 e)+(+1 / 3 e)=+e$				
$(-1 / 3 e)+(-2 / 3 e)=-e$				
$(-1 / 3 e)+(1 / 3 e)=0$			$\quad(3)$	
:---				

Question number	Answer	Mark
13(a)	- Use of $v^{2}=u^{2}+2 a s$ with $v=0$ Or use of equivalent pair of equations - Initial speed $=7.3\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Example of calculation $\begin{align*} & 0=u^{2}+2 \times\left(-2.4 \mathrm{~m} \mathrm{~s}^{-2}\right) \times 11 \mathrm{~m} \\ & u=7.3 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	2
13(b)	- Use of $p=m v$ (allow ecf of value from (a)) - Use of correct trigonometrical function for East-West momentum - Use of correct trigonometrical function for North-South momentum - Initial speed of car A $=7.8 \mathrm{~m} \mathrm{~s}^{-1}$ - Initial speed of car $B=11.5 \mathrm{~m} \mathrm{~s}^{-1}$ - So neither car was speeding Or conclusion consistent with their calculated values Example of calculation $\begin{aligned} & p=\left(1100 \mathrm{~kg} \mathrm{C}^{2} 400 \mathrm{~kg}\right) \times 7.3 \mathrm{~m} \mathrm{~s}^{-1} \\ & =18250 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\ & p_{\mathrm{A}}=18250 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \times \cos 62^{\circ} \\ & =8570 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\ & u_{\mathrm{N}}=8570 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \div 1100 \mathrm{~kg}^{-1} .8 \mathrm{~m} \mathrm{~s}^{-1} \\ & P_{\mathrm{B}}=18250 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \times \sin 62^{\circ} \\ & =16100 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\ & u_{\mathrm{B}}=16100 \mathrm{~kg} \mathrm{~s} \mathrm{~s}^{-1} \div 1400 \mathrm{~kg}=11.5 \mathrm{~m} \mathrm{~s}^{-1} \\ & 7.8 \mathrm{~m} \mathrm{~s}^{-1}<8.3 \mathrm{~m} \mathrm{~s}^{-1} \text { and } 11.5 \mathrm{~m} \mathrm{~s}^{-1}<13.9 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ So neither car was speeding	6
	Total for Question 13	8

Question number	Answer		Mark
14(a)	- Initially a straight line with a positive gradient Or reference to $s=v t$ - Then an upward curve that does not reach $v=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$	(1) (1)	2
14(b)	- Initially distance proportional to speed - At higher speeds there is a relativistic increase in the lifetime of the particles - So the particles travel further as their lifetime is extended	(1) (1) (1)	3
	Total for Question 14		5

Question number	Answer	Mark
15(a)	- Use of factor $1.6 \times 10^{-19} \mathrm{C}$ to convert eV to J - Use of $\Delta m=\Delta E / c^{2}$ - mass $=1.9 \times 10^{-28} \mathrm{~kg}$ Example of calculation $\begin{aligned} & E=106 \times 10^{6} \mathrm{eV} \times 1.6 \times 10^{-19} \mathrm{C}=1.7 \times 10^{-11} \mathrm{~J} \\ & m=1.7 \times 10^{-11} \mathrm{~J} \div\left(3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\ & =1.9 \times 10^{-28} \mathrm{~kg} \end{aligned}$	3
15(b)	- the minimum value assumes no kinetic energy is carried away by the particle - a particle with kinetic energy would require more energy from the black hole and hence a greater mass decrease from the black hole	2
	Total for Question 15	5

Question number	Answer	Mark
16	- Energy conversion using $1.6 \times 10^{-19} \mathrm{C}$ - Use of $E_{\mathrm{p}}=V q$ - Use of $Q / 4 \pi \varepsilon_{0} r$ with $Q=79 e$ - $r=2.9 \times 10^{-14} \mathrm{~m}$ - This is about 10000 times smaller than the atom, so it is consistent with the conclusion that there is a massive nucleus in an atom that is mostly empty space Or conclusion consistent with their calculated values Example of calculation $\begin{aligned} & \text { Initial } E_{\mathrm{k}}=7.7 \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{C}=1.23 \times 10^{-12} \mathrm{~J} \\ & V=7.36 \times 10^{-13} \mathrm{~J} \div\left(2 \times 1.6 \times 10^{-19} \mathrm{C}=3.85 \times 10^{6} \mathrm{~V}\right. \\ & r=79 \times 1.6 \times 10^{-19} \mathrm{C} \div\left(4 \times \pi \times 8.85 \times 10^{-12} \mathrm{~F}^{-1} \times 3.85 \times 10^{6} \mathrm{~V}\right) \\ & r=2.9 \times 10^{-14} \mathrm{~m} \end{aligned}$	5
	Total for Question 16	5

Question number	Answer		Mark
17(a)	- Electrons produced by thermionic emission (at the filament) - Electrons are accelerated by an electric field between the anode and the cathode	(1) (1)	2
17(b)(i)	- Use of $E=V / d$ and $F=E Q$ - Use of $F=m a$ - Use of $v=s / t$ - Use of $s=u t+1 / 2 a t^{2}$ with $u=0$ - $s=0.013 \mathrm{~m}$ - which is less than 0.025 m so it doesn't hit the plate Or give credit for answer consistent with calculated value Example of calculation $\begin{aligned} & E=550 \mathrm{~V} / 0.05 \mathrm{~m}=11000 \mathrm{~V} \mathrm{~m}^{-1} \\ & F=11000 \mathrm{~V} \mathrm{~m}^{-1} \times 1.6 \times 10^{-19} \mathrm{C} \\ & F=1.76 \times 10^{-15} \mathrm{~N} \\ & a=F / m=1.76 \times 10^{-15} \mathrm{~N} / 9.11 \times 10^{-31} \mathrm{~kg} \\ & a=1.93 \times 10^{15} \mathrm{~m} \mathrm{~s}^{-2} \\ & t=0.10 \mathrm{~m} / 2.7 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}=3.70 \times 10^{-9} \mathrm{~s} \\ & s=1 / 2 \times 1.93 \times 10^{15} \mathrm{~m} \mathrm{~s}^{-2} \times\left(3.70 \times 10^{-9} \mathrm{~s}\right)^{2} \\ & s=0.013 \mathrm{~m} \end{aligned}$	(1) (1) (1) (1) (1) (1)	6
17(b)(ii)	- Use of $\lambda=h / p$ - $\lambda=2.7 \times 10^{-11} \mathrm{~m}$ Example of calculation $\begin{aligned} & \lambda=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \div\left(9.11 \times 10^{-31} \mathrm{~kg} \times 2.7 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \lambda=2.7 \times 10^{-11} \mathrm{~m} \end{aligned}$	(1) (1)	2
	Total for Question 17		10

Question number	Answer		Mark
18(a)	For each law, states what is conserved and uses values for the particles in the equation to demonstrate conservation - baryon number is conserved - neutron $(1) \rightarrow$ proton $(1)+$ electron $(0)+$ antineutrino(0) - lepton number is conserved - neutron $(0) \rightarrow$ proton $(0)+$ electron $(+1)+\operatorname{antineutrino(~}-1$) - charge is conserved - neutron $(0) \rightarrow \operatorname{proton}(+1)+$ electron $(-1)+$ antineutrino (0)	(1) (1) (1) (1) (1) (1)	6
18(b)	- Attempt at calculation of mass difference - eV conversion - Use of $E_{\mathrm{k}}=p^{2} / 2 m$ - $p=4.77 \times 10^{-22} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ Example of calculation $\begin{aligned} & \Delta m=m_{n}-m_{p}-m_{e} \\ & \Delta m=939.5656 \mathrm{MeV} / \mathrm{c}^{2}-938.2723 \mathrm{MeV} / \mathrm{c}^{2}-0.5110 \mathrm{MeV} / \mathrm{c}^{2} \\ & =0.7823 \mathrm{MeV} / \mathrm{c}^{2} \\ & E_{\mathrm{k}}=0.7823 \times 10^{6} \mathrm{eV} \times 1.60 \times 10^{-19} \mathrm{C}=1.25 \times 10^{-13} \mathrm{~J} \\ & p=\sqrt{ }\left(2 \times 1.25 \times 10^{-13} \mathrm{~J} \times 9.11 \times 10^{-31} \mathrm{~kg}\right) \\ & p=4.77 \times 10^{-22} \mathrm{~kg} \mathrm{~m} \mathrm{~s} \end{aligned}$	(1) (1) (1) (1)	4
	Total for Question 18		10

Question number	Answer	Mark
19(b)(i)	- Force on proton due to magnetic field $(B Q v)=$ centripetal force $\left(m v^{2} / r\right)$ - Use $p=m v$ - Correct algebraic link to $r=p / B Q$	3
19(b)(ii)	- Use of $E=p c$ - Use of $r=p / B Q$ - $B=7.7 \mathrm{~T}$ Example of calculation $\begin{aligned} & p=6.5 \times 10^{12} \times 1.6 \times 10^{-19} \mathrm{C} \div 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & =3.47 \times 10^{-15} \mathrm{Ns} \\ & B=3.47 \times 10^{-15} \mathrm{Ns} \div\left(2800 \mathrm{~m} \times 1.6 \times 10^{-19} \mathrm{C}\right) \\ & B=7.7 \mathrm{~T} \end{aligned}$	3
	Total for Question 19	12

Question number	Answer	Mark
20(a)(i)	- Alternating current produces an alternating/varying magnetic field - Magnetic flux in first coil linked to second coil Or lines of flux cutting coil in second coil Or so there is varying flux in second coil - An e.m.f. is therefore induced in the second coil - There is a current in the capacitor circuit because there is a complete circuit	4
20(a)(ii)	- Alternating current will charge the capacitor during one half cycle and discharge it during the other half cycle - so a diode is needed to convert the ac to dc Or the diode only conducts during every alternate half cycle	2
20(b)(i)	- Use of $C=Q / V$ - $Q=0.059 \mathrm{C}$ $\begin{align*} & \text { Example of calculation } \tag{1}\\ & \begin{array}{l} Q=1.8 \times 10^{-4} \mathrm{~F} \times 330 \mathrm{~V} \\ Q=0.059 \mathrm{C} \end{array} \end{align*}$	2
20(b)(ii)	- Use of $W=1 / 2 Q V$ or a derived equation - $W=9.8 \mathrm{~J}$ Example of calculation $\begin{aligned} & W=0.5 \times 0.059 \mathrm{C} \times 330 \mathrm{~V} \\ & Q=9.8 \mathrm{~J} \end{aligned}$	2
20(b)(iii) 1.	- Use of $V=V_{0} /$ e to find time constant Or intercept with t axis using initial tangent to find time constant - Use of time constant $=R C$ - Use of $V=I R$ - $\mathrm{I}=270 \mathrm{~A}$ Example of calculation $V_{0} / \mathrm{e}=330 \mathrm{~V} / \mathrm{e}=121 \mathrm{~V}$ Time constant $=217 \times 10^{-6} \mathrm{~s}$ $217 \times 10^{-6} \mathrm{~s}=R \times 1.8 \times 10^{-4} \mathrm{~F}$ $R=1.2 \Omega$ $I=330 \mathrm{~V} / 1.2 \Omega$ $=274 \mathrm{~A}$	4

Question number	Answer		Mark
20(b)(iii) 2.	Either - Use of 20% of W_{0} - Use of $W=1 / 2 C V^{2}$ - Use $V=V_{0} e^{\frac{-t}{R C}}$ - $t=1.7 \times 10^{-4} \mathrm{~s}$ Or - Calculate 20% of initial energy $=1.96 \mathrm{~J}$ - Use of $W=1 / 2 Q V$ and $C=Q / V$ - Use of graph to determine corresponding value of t - $t=1.7 \times 10^{-4} \mathrm{~s}$ Example of calculation $\begin{aligned} & \hline V / V_{0}=\sqrt{ } 0.2=0.45 \\ & 0.45 V_{0}=V_{0} e^{\frac{-t}{R C}} \\ & \ln 0.45=\frac{-t}{0.00018 \mathrm{~F} \times 1.2 \Omega} \\ & t=1.7 \times 10^{-4} \mathrm{~S} \end{aligned}$ Or $W=1 / 2 Q V$ and $C=Q / V$ so $W=1 / 2 C V^{2}$ $V=\sqrt{ }\left(2 \times 1.96 \mathrm{~J} \div 1.8 \times 10^{-4} \mathrm{~F}\right)=148 \mathrm{~V}$ $t=1.7 \times 10^{-4} \mathrm{~s}$	(1) (1)	4
	Total for Question 20		18

