Unit 4: Further Mechanics, Fields and Particles - Mark scheme

Question number	Answer	Mark
1	D	1
2	С	1
3	Α	1
4	В	1
5	С	1
6	В	1
7	D	1
8	В	1
9	D	1
10	D	1

Question number	Answer	Mark
11	• Use of $E = Q/4\pi\varepsilon_0 r^2$ (1)	3
	• $E = 1.1 \times 10^5 \mathrm{N} \mathrm{C}^{-1}$ (1)	
	• Direction is towards the point charge (1)	
	Example of calculation $E = Q/4\pi\epsilon_0 r^2$	
	$E = 3.7 \times 10^{-9} \text{ C/} (4\pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} (0.055 \text{ m})^2)$ $E = 1.1 \times 10^5 \text{ N C}^{-1}$	
	Total for Question 11	3

Question number	Answer		Mark
12	 Identifies meson structure quark – antiquark 1 correct combination 1 mark 2 or 3 correct combinations 2 marks All four correct combinations 3 marks <u>Combinations are</u> (+²/₃e) + (-²/₃e) = 0 (+²/₃e) + (+¹/₃e) = +e (-¹/₃e) + (-²/₃e) = - e (-¹/₃e) + (¹/₃e) = 0 	(1) (3)	4
	Total for Question 12		4

Question number	Answer		Mark
13(a)	• Use of $v^2 = u^2 + 2as$ with $v = 0$		2
	Or use of equivalent pair of equations	(1)	
	• Initial speed = $7.3 \text{ (m s}^{-1}\text{)}$	(1)	
	Example of calculation		
	$0 = u^2 + 2 \times (-2.4 \text{ m s}^{-2}) \times 11 \text{ m}$		
	$u = 7.3 \text{ m s}^{-1}$		
13(b)	• Use of $p = mv$ (allow ecf of value from (a))	(1)	6
	• Use of correct trigonometrical function for East–West momentum	(1)	
	• Use of correct trigonometrical function for North–South	(1)	
	momentum	(1)	
	• Initial speed of car A = 7.8 m s^{-1}	(1)	
	• Initial speed of car $B = 11.5 \text{ m s}^{-1}$	(1)	
	• So neither car was speeding	(1)	
	Or conclusion consistent with their calculated values	(1)	
	Example of calculation		
	$p = (1100 \text{ kg} + 1400 \text{ kg}) \times 7.3 \text{ m s}^{-1}$		
	$= 18250 \text{ kg m s}^{-1}$		
	$p_{\rm A} = 18250 \text{ kg m s}^{-1} \times \cos 62^{\circ}$		
	$= 8570 \text{ kg m s}^{-1}$		
	$u_{\rm N} = 8570 \text{ kg m s}^{-1} \div 1100 \text{ kg} = 7.8 \text{ m s}^{-1}$		
	$P_{\rm B} = 18250 \text{ kg m s}^{-1} \times \sin 62^{\circ}$		
	$= 16100 \text{ kg m s}^{-1}$		
	$u_{\rm B} = 16100 \text{ kg m s}^{-1} \div 1400 \text{ kg} = 11.5 \text{ m s}^{-1}$		
	$7.8 \text{ m s}^{-1} < 8.3 \text{ m s}^{-1}$ and $11.5 \text{ m s}^{-1} < 13.9 \text{ m s}^{-1}$		
	So neither car was speeding		0
	Total for Question 13		8

Question number	Answer	Mark
14(a)	 Initially a straight line with a positive gradient Or reference to s = vt Then an upward curve that does not reach v = 3.0 × 10⁸ m/s 	2
14(b)	 Initially distance proportional to speed (1) At higher speeds there is a relativistic increase in the lifetime of the particles (1) So the particles travel further as their lifetime is extended (1) 	3
	Total for Question 14	5

Question number	Answer		Mark
15(a)	• Use of factor 1.6×10^{-19} C to convert eV to J	(1)	3
	• Use of $\Delta m = \Delta E / c^2$	(1)	
	• mass = 1.9×10^{-28} kg	(1)	
	Example of calculation		
	$\overline{E} = 106 \times 10^{6} \text{ eV} \times 1.6 \times 10^{-19} \text{ C} = 1.7 \times 10^{-11} \text{ J}$		
	$m = 1.7 \times 10^{-11} \text{ J} \div (3.0 \times 10^8 \text{ m s}^{-1})^2$		
	$= 1.9 \times 10^{-28} \text{ kg}$		
15(b)	• the minimum value assumes no kinetic energy is carried away by		2
	the particle	(1)	
	• a particle with kinetic energy would require more energy from the		
	black hole and hence a greater mass decrease from the black hole	(1)	
	Total for Question 15		5

Question number	Answer		Mark
16	 Energy conversion using 1.6 × 10⁻¹⁹ C Use of E_p = Vq Use of Q/4πε₀r with Q = 79e r = 2.9 × 10⁻¹⁴ m This is about 10 000 times smaller than the atom, so it is consistent with the conclusion that there is a massive nucleus in an atom that is mostly empty space Or conclusion consistent with their calculated values Example of calculation Initial E_k = 7.7 × 10⁶ × 1.6 × 10⁻¹⁹ C = 1.23 × 10⁻¹² J V = 7.36 × 10⁻¹³ J ÷ (2 × 1.6 × 10⁻¹⁹ C = 3.85 × 10⁶ V) r = 79 × 1.6 × 10⁻¹⁹ C ÷ (4 × π × 8.85 × 10⁻¹² F m⁻¹ × 3.85 × 10⁶ V)	(1) (1) (1) (1) (1)	5
	$r = 2.9 \times 10^{-14} \text{ m}$ Total for Question 16		5

Question number	Answer		Mark
17(a)	• Electrons produced by thermionic emission (at the filament)	(1)	2
	• Electrons are accelerated by an electric field between the anode and the cathode	(1)	
17(b)(i)	• Use of $E = V/d$ and $F = EQ$	(1)	6
	• Use of $F = ma$	(1)	
	• Use of $v = s/t$	(1)	
	• Use of $s = ut + \frac{1}{2} at^2$ with $u = 0$	(1)	
	• $s = 0.013 \text{ m}$	(1)	
	• which is less than 0.025 m so it doesn't hit the plate	(1)	
	Or give credit for answer consistent with calculated value	(1)	
	Example of calculation $E = 550 \text{ V} / 0.05 \text{ m} = 11 000 \text{ V m}^{-1}$ $F = 11 000 \text{ V m}^{-1} \times 1.6 \times 10^{-19} \text{ C}$ $F = 1.76 \times 10^{-15} \text{ N}$ $a = F/m = 1.76 \times 10^{-15} \text{ N} / 9.11 \times 10^{-31} \text{ kg}$ $a = 1.93 \times 10^{-15} \text{ m s}^{-2}$ $t = 0.10 \text{ m} / 2.7 \times 10^7 \text{ m s}^{-1} = 3.70 \times 10^{-9} \text{ s}$ $s = \frac{1}{2} \times 1.93 \times 10^{-15} \text{ m s}^{-2} \times (3.70 \times 10^{-9} \text{ s})^2$ s = 0.013 m		
17(b)(ii)	• Use of $\lambda = h/p$ • $\lambda = 2.7 \times 10^{-11} \text{ m}$	(1) (1)	2
	Example of calculation $\lambda = 6.63 \times 10^{-34} \text{ J s} \div (9.11 \times 10^{-31} \text{ kg} \times 2.7 \times 10^7 \text{ m s}^{-1})$ $\lambda = 2.7 \times 10^{-11} \text{ m}$		
	Total for Question 17		10

Question number	Answer		Mark
18(a)	 For each law, states what is conserved and uses values for the particles in the equation to demonstrate conservation baryon number is conserved neutron(1) → proton(1) + electron(0) + antineutrino(0) lepton number is conserved neutron(0) → proton(0) + electron(+1) + antineutrino(-1) charge is conserved neutron(0) → proton(+1) + electron(-1) + antineutrino(0) 	(1) (1) (1) (1) (1) (1)	6
18(b)	 Attempt at calculation of mass difference eV conversion Use of E_k = p²/2m p = 4.77 × 10⁻²² kg m s⁻¹ Example of calculation Δm = m_n - m_p - m_e Δm = 939.5656 MeV/c² - 938.2723 MeV/c² - 0.5110 MeV/c² = 0.7823 MeV/c² E_k = 0.7823 × 10⁶ eV ×1.60 × 10⁻¹⁹ C = 1.25 × 10⁻¹³ J p = √(2 × 1.25 × 10⁻¹³ J × 9.11 × 10⁻³¹ kg) p = 4.77 × 10⁻²² kg m s⁻¹ 	(1) (1) (1) (1)	4
	Total for Question 18		10

Question number		Answ	er	Mark
19(a)	logically structure reasoning. Marks are awarde Structured and sh The following tal for indicative cor Number of indicative marking points seen in answer 6 5–4 3–2 1	ed answer with link ed for indicative concerns of reason pole shows how the matern. Number of marks awarded for indicative marking points 4 3 2 1	pility to show a coherent and cages and fully-sustained ntent and for how the answer is ning. marks should be awarded	6
	0 The following tabl structure and lines		ks should be awarded for Number of marks awarded for structure of answer and sustained line of reasoning	
	Answer shows a clogical structure v fully sustained lindemonstrated through	with linkages and nes of reasoning	2	
	Answer is partiall some linkages and reasoning	-	1	
	Answer has no lipoints and is uns		0	
		ed is the sum of marl ture and lines of reas	cs for indicative content and oning.	
	 Potential differential differential	eccelerates proton acr rence oscillates at a c istant for each cycle ive gaps at greater sp istant speed within th rence oscillates at a c each cycle	onstant frequency so the time in eeds so the gaps must increase in	

Question	Answer		Mark
number			
19(b)(i)	• Force on proton due to magnetic field (BQv) = centripetal force		3
	(mv^2/r)	(1)	
	• Use $p = mv$	(1)	
	• Correct algebraic link to $r = p/BQ$	(1)	
19(b)(ii)	• Use of $E = pc$	(1)	3
	• Use of $r = p/BQ$	(1)	
	• $B = 7.7 \text{ T}$	(1)	
	Example of calculation $p = 6.5 \times 10^{12} \times 1.6 \times 10^{-19} \text{ C} \div 3.00 \times 10^8 \text{ m s}^{-1}$ $= 3.47 \times 10^{-15} \text{ Ns}$ $B = 3.47 \times 10^{-15} \text{ Ns} \div (2800 \text{ m} \times 1.6 \times 10^{-19} \text{ C})$ B = 7.7 T		
	Total for Question 19		12

Question number	Answer		Mark
20(a)(i)	 Alternating current produces an alternating/varying magnetic field Magnetic flux in first coil linked to second coil Or lines of flux cutting coil in second coil Or so there is varying flux in second coil An e.m.f. is therefore induced in the second coil 	(1) (1) (1)	4
	 All clinit is infectore induced in the second configuration. There is a current in the capacitor circuit because there is a complete circuit 	(1)	
20(a)(ii)	 Alternating current will charge the capacitor during one half cycle and discharge it during the other half cycle so a diode is needed to convert the ac to dc Or the diode only conducts during every alternate half cycle 	(1) (1)	2
20(b)(i)	• Use of $C = Q/V$ • $Q = 0.059$ C	(1) (1) (1)	2
	$\frac{\text{Example of calculation}}{Q = 1.8 \times 10^{-4} \text{ F} \times 330 \text{ V}}$ $Q = 0.059 \text{ C}$		
20(b)(ii)	 Use of W = ½ QV or a derived equation W = 9.8 J Example of calculation W = 0.5 × 0.059 C × 330 V 	(1) (1)	2
20(b)(iii) 1.	 Q = 9.8 J Use of V= V₀ /e to find time constant Or intercept with t axis using initial tangent to find time constant 	(1)	4
	 Use of time constant = <i>RC</i> Use of <i>V</i> = <i>IR</i> I = 270 A 	(1) (1) (1)	
	$\frac{\text{Example of calculation}}{V_0 / e = 330 \text{ V} / e = 121 \text{ V}}$ Time constant = 217 × 10 ⁻⁶ s 217 × 10 ⁻⁶ s = R × 1.8 × 10 ⁻⁴ F R = 1.2 Ω I = 330 V / 1.2 Ω = 274 A		

Question number	Answer		Mark
20(b)(iii) 2.	Either • Use of 20% of W_0 • Use of $W = \frac{1}{2}CV^2$ • Use $V = V_0 e^{\frac{-t}{RC}}$ • $t = 1.7 \times 10^{-4}$ s Or • Calculate 20% of initial energy = 1.96 J • Use of $W = \frac{1}{2}QV$ and $C = Q/V$ • Use of graph to determine corresponding value of t • $t = 1.7 \times 10^{-4}$ s Example of calculation $V/V_0 = \sqrt{0.2} = 0.45$ $0.45 V_0 = V_0 e^{\frac{-t}{RC}}$ In $0.45 = \frac{-t}{0.00018 \text{ F} \times 1.2\Omega}$ $t = 1.7 \times 10^{-4}$ s Or $W = \frac{1}{2}QV$ and $C = Q/V$ so $W = \frac{1}{2}CV^2$ $V = \sqrt{(2 \times 1.96 \text{ J} \div 1.8 \times 10^{-4} \text{ F})} = 148 \text{ V}$ $t = 1.7 \times 10^{-4}$ s	$(1) \\(1) \\(1) \\(1) \\(1) \\(1) \\(1) \\(1)$	4
	Total for Question 20		18